ESBL/pAmpC-producing Enterobacteriaceae from healthy bearded dragons (Pogona Vitticepts): Preliminary results

Joaquim Smolders¹, Rui Patrício^{2,3}, Andreia Valença^{2,3}, Leonor Silveira⁴, Ângela Pista⁴, João Paulo Gomes^{2,4,5}, Alexandra Nunes^{2,4,5}, Adriana Belas^{2,3,5}

¹Faculty of Veterinary Medicine, Lusófona University, Lisbon University Center, Lisbon, Portugal. ²Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, Portugal.

³Higher School of Animal Health, Protection and Welfare (ESPA) – Polytechnic Institute of Lusofonia (IPLUSO), Lisbon, Portugal.

⁴Reference Laboratory for Gastrointestinal infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.

⁵Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, Portugal.

Objectives: With the increasing trend of keeping bearded dragons (*Pogona vitticeps*) as pets, there is a higher risk of transmitting multidrug-resistant (MDR) bacteria to humans. This study aimed to evaluate the presence od ESBL/pAmpC-producing Enterobacteriaceae and *Salmonella* spp. from healthy bearded dragons.

Material and methods: From March to April 2023, oral cavity and cloacal swab samples from healthy bearded dragons (n=20) were collected from different breeders/owners from the Lisbon area, Portugal. 3GC-resistance Enterobacteriacea were screened MacConkey agar supplemented with 1.0 μ g/mL of cefotaxime and *Salmonella* spp. isolates on IRIS Salmonella® (Biokar) agar. *Salmonella* spp. serotyping was performed according to White-Kauffmann-Le Minor scheme. Antimicrobial susceptibility testing was performed by disc diffusion method following the EUCAST and CLSI guidelines. β -lactamase genes were confirmed by PCR.

Results: In this study, 10% (n=2/20) animals were colonized with C3G-resistant Enterobacterales, specifially *Klebsiella aerogenes* (n=2) and *Escherichia coli* (n=1). C3G-resistant *E. coli* was identified in the cloaca and the following βlactamase genes were detected: bla_{0XA-1} , bla_{TEM} , $bla_{CTXM:grupo 1}$. *K. aerogenes* isolates were detected in both cavities of the same animal. *K.aerogenes* isolates were positive for bla_{TEM} and bla_{DHA} genes. These isolates were MDR. Also, in this study, 25% (n=5/20) of the animals were found to be colonized with *Salmonella* spp. Addicionally, three distinct *S.* enterica serovars were detected: *S*. subsp. *enterica enterica* ser. pomona (n=1), *S*. subsp. *enterica diarizonae* ser. 53:k:e,n,x,z15 (n=1) e *S.* subsp. *enterica* ser. kentucky (n=2). All *Salmonella* spp. isolates were susceptible to all the classes of antimicrobials studied.

Conclusion: This study has provided crucial information about the presence of potentially zoonotic bacteria, with particular attention to *salmonella* spp. and ESBL/pAmpC-producing Enterobacteriacea. The close interaction with bearded dragons may pose a risk to human health, particularly considering antimicrobial resistance, which is a growing concern in public health.

Keywords: Bearded dragons, ESBL/pAmpC-producing Enterobacteriaceae, *Salmonella* spp..

Funding: This project was funded by the FMV-ULusófona Dissertations' Research Grants 2022-2023.